Converting Standard Reports		Kent Finley
	[image:]	

The more you need it, the less likely it is to work. But choose your battles...trying to re-engineer how OR tracks block utilization or B/AR ages accounts is probably not going to meet with much success. These are reports written out of statistics segments, and you can’t change how those are derived.
[image:]
Here’s one that does let you initialize:
[image:]
So far so good...
[image:]

But where are the selections?
[image:]

We’d better print the standard report:
[image:]

Here’s the screen bit from the printout.
[image:]
This doesn’t indicate what attributes are associated with the selections – from experience, we know that the Include/Exclude prompt brings up a choice selection.

 NPR.PROC.list would be nice. Iatric Systems to the rescue – NPR.PROC.zcus.is.list:
[image:]

Most of the selections are in place. We’ll add some attributes later.
[image:]

xx.temp.choice needs to be created in place of “c.temp.choice” [image:]
resource.group is accessible, but not in the data def
[image:]
(it’s in a segment called “locals”, not accessible to the report writer)[image:]

...but do an S\<lookup>
[image:]
Right-arrow in, press “r” to get to the elements beginning with “r”...
[image:]

F12 or OK to bring it back... voilà![image:]

Let’s leave the report picture for now, and go make some changes in the macros and footnotes.
First change is to update the footnote calls to reference this report’s macros. Note that the AL START footnote in the original called just the main report logic, SCH.PAT.list.daily.log(“”). We’ll need to create a macro for that, we’ll call it ‘main’. File the report and ignore any translation errors for now.
[image:]

Create the ‘main’ macro:
- Macro: 7. Enter/Edit (might be 6. if 5.5)
- type main then press Enter: will have a blank screen.
-F5, Get From File
DPM: SCH.PAT (default), <Enter>
Procedure: will default to current procedure. Type list.daily.log <Enter>
This brings the text of the logic into a read-only window.
Select all text (Ctrl-Home,Shift-Ctrl-End), cut or copy (Shift-Del or Ctrl-Ins) ,
ESC back to ‘main’ window, paste (Shift-Ins).
[image:]
[image:]

This is the read-only window from the standard code.
[image:]
This is the code pasted into our ‘main’ macro:
[image:]

If you file as-is, this is what you’ll get.

[image:]

Some syntax issues likely to be encountered in macros:

M(A,B) or @Move (A,B) - use @ZMove(A,B) or %Z.move(^A,^B,1)
G(A,B) or @Replace(A,B) – use @ZReplace(A,B) or %Z.move(^A,^B,2)
@Next(@subscript) – subscript has “@” "s "bscript ipt.with.at.signour 'the standard code.

· Change to @Next(subscript)
@Kill(/STUFF) or KILL(/STUFF) or K(/STUFF)
· Change to DO{>/STUFF[SUB]^SUB “”^/STUFF[SUB]},””^/STUFF
O(*S,%some.file)
· Change to ZZ%OP(*S,%[“some.file”])

There may be other fields you’ll need to write to, and Meditech codes them as ^@
· Create a macro, name of your choosing (“test” will suffice)
· Insert the @field in the macro (e.g. @.user)
· File and Exit (F12), Translate on View, “No” to Errors Only dialog
· IN: @.user
· OUT: /(.S).USR
· You can use /(.S).USR instead of @.user

OK, let’s get started editing this macro. First instance of K(is K(@Root(temp.date.x)) But what the heck is @Root(temp.date.x)??? The approach above will show that it’s /TEMP, so we can use the substitution as above to get:
“”^SUB,DO{>/TEMP[SUB]^SUB “”^/TEMP[SUB]},””^/TEMP,
(See also NPR.PROC.zcus.is.view.utility, S\SCH.PAT.temp.date.x)
Most of our selects were using the same fields as the standard report, save one (xx.temp.choice), so we need to replace all references to c.temp.choice with c.xx.temp.choice in the main macro. Navigate to the top of the macro (Ctrl-Home). Press F2 to bring up search and replace window, Find c.temp.choice, Replace with: c.xx.temp.choice, A=a? Y, Verify? N (replace all of them.)
[image:]
We also need to replace any references to SCH.PAT.list.daily.log with the current report, SCH.PAT.zcus.is.list.daily.log. In fact, we have a choice here, since the ‘surgeon’ macro is all that’s being called. If it’s not going to be altered, you can retain the call to the macro in the original report. Use the same search/replace function as before, file and translate.

Let’s go to the ‘surgeon’ macro now. As it turns out, this is just a check that there are procedures for a case, and if no actual ops are found and the case is deferred, it will check proposed ops. And this one translates fine. Let’s leave it be.
Now the ’build’ macro: This macro builds data in a run-time multiple data structure (an “MV” array). This depends on field numbers to be accurate, and adding/deleting fields can change those field numbers, thus rendering the macro useless. So we’ll use Z.zcus.is.rw.util.M.field(“”) call to get the numbers of the custom fields returned in /FLD so our MV array will be self-correcting. We need this called once at the start of the report, so insert this call in the ‘main’ macro. (Z.zcus.is.rw.util is available for download from Iatric website, but included in this package as well.)
[image:]
Now we need to replace the field numbers in the ‘build’ macro with the /FLD data. You’ll need the print out of the standard report as well as a printout of the custom report (so we know what the field numbers were on the standard, and what the field names are on the custom.) In this case, fields numbered 11, 30, 31, 32, and 33 on the standard report are xx.line, xx.surgeon, xx.actual.op, xx.cut and xx.close, respectively, in the custom report.
Search for all occurrences of @Z.rpt.mv in the ‘build’ macro. These will be of the form @Z.rpt.mv[x,x,number] where ‘number’ is one of the numbers above. Replace these numbers with /FLD[“name.of.field”] as appropriate, so if @Z.rpt.mv[OP,1,11] is the original, @Z.rpt.mv[OP,1,/FLD[“xx.line”]] will be the replacement.

Ok, now the report picture. All the computed fields (xx.nnnn) have VAL=@Z.rpt.v[some.number] where “some.number” corresponds to the field numbers in the standard report.
xx.b.operation.date old DAT=FREE,VAL=@Z.rpt.v[50]; new DAT=DATE,VAL=b.operation.date
xx.e.operation.date old DAT=FREE,VAL=@Z.rpt[51]; new DAT=DATE,VAL=e.operation.date
xx.c.surgeon, xx.resource.group ok as-is
xx.c.temp.choice – replace with xx.temp.choice
xx.patient.prompt – ok as-is

Now, the fields used in the run-time multiple should be updated to have FNC=LST (translator complains if otherwise) and the VAL clause doesn’t really matter, but let’s replace with “run-time multiple” to make it clear. This applies to the fields xx.line, xx.surgeon, xx.actual.op, xx.cut, xx.close.

xx.deferred – ok as-is
xx.total (Z.count should work)

One more thing, we need to restore at least one part of the screen, the choice elements for xx.temp.choice. (Other field attributes are optional, but xx.temp.choice is used in determining what cases to include.)
[image:]

[image:]File and translate the screen.
Take a look at the ‘main’ macro. This sets up the temp index, the definition of which includes operation.room and operation.time.
[image:]

The standard code was .^operation.room^operation.time. In effect, this eliminates room and time from the sort/index by substituting . for whatever the actual values were. (If we don’t need to sort by the values, but do need to reference them in the report, VAL=@operation.room[urn] should work. Note how TIME.IN and TIME.OUT are stored in the index itself.)
We really want this to sort by room and time, as well as date. The highlighted code above accomplishes this...almost. Now we also have to alter the order of the sort on the Sorts/Selects tab of the report, so that ‘urn’ comes after the elements we really want to sort by.
[image:]
Why does initializing the report place the urn in the first sort position, and not the last? Very good question...and I don’t have an answer. The sort order above is the natural order of the temp.date.x structure. Chalk it up to bugs in the initialize routine.
[image:]
Now, you should have a functioning report, initialized from the standard, to which you can make various modifications: add elements to or remove elements from the run-time multiples (for fields that can change with each procedure in a case); add fields to or remove fields from the report picture directly (you’ll be glad you took the extra time with the Z.zcus.is.rw.util.M.field call and /FLD[“xx.field”]); change the sort order (to an extent—elements can be added or moved around, but the index temp.date.x needs to remain on page 1, and all the elements of that index must be included in the sort.)
 [image:]
Ok, print the report using NPR.PROC.zcus.is.list.
See that it has a detail segment of “extemp.temp”
Use NPR.PROC.zcus.is.view.utility to view the segment
[image:]
[image:]
The first three elements are subscripts, extemp.count is the value of /TREX[tde,tfI,trDS]|0

Also a child segment:
[image:]
Retrieve the standard report’s ‘sort’ macro. Do the same substitutions as before (3 occurrences of “K(“ need replacing in this case.) Three places in the macro that attempt to write to extemp.temp need replacing with /TREX--one of them is K(@Root(@extemp.temp). Search for @extemp...
[image:]

[image:]
Not immediately obvious, but @Add(K,@extemp.count[E,M,D]) is a direct edit to the standard structure and won’t get by the syntax checker. Also note that using the logical structure name, the “R” subscript in
IF{PR urn^@extemp.rx[E,M,D,@number]}
is not required. Replacing it with the physical structure name, the subscript IS required.
IF{PR urn^/TREX[E,M,D,”R”,@number]}
In the ‘INDEX’ macro, we’re also changing what displays for the med. Standard has IF{@PHA.DRUG.name;@PHA.DRUG.generic.name}

Ok, now I’m getting lazy... I don’t want to reproduce the standard screen, so I’d like to call it from the standard report. Do this in a macro call in the title of the report. This will set up all the variables needed by the sort macro. (The alternative is to build the standard selection screen as best one can, then replace the r., c., references in the ‘sort’ macro with the corresponding references from the custom screen.)
[image:]
[image:]
Standard Screens
· With or without additional selections, it will always give the Print On prompt twice, once from the standard screen and once from the custom report. The second Print On prompt “wins” (the custom report’s).

[image:]

Reproduce the sort order and fields from extemp.temp (/TREX) – first three are defined as VAL=PHA.RX.xx.field.name, number is from number index, urn is a required element. urn EQ /URNS is to make a selection on the urns as set up in the ‘sort’ macro (see INDEX submacro).

Standard report has Page header for sort key 1. For some reason, doing the same in the custom produced a blank page (and I think I know why now...) Changed this to key header and added logic in report picture to keep track of the previous value for PHA.RX.xx.extemp.extemp. Invoke new page program if PHA.RX.xx.extemp.extemp is not the same as the previous occurrence.
[image:]

[image:]

Reworked the output a bit from standard as well. Standard would have had first three subscripts of sort, so detail corresponded to the 3rd subscript (extemp.dose.sig). Add a header/trailer to 3rd sort, detail now corresponds to urn (standard report looped through extemp.rx at this point).
To get the proper elements into the temp sort file, we need to call a macro at the Report Header (HR) region. It has to be called at the Report Header or else translated report code wipes it out.
[image:]
The RC footnote is to prevent any blanks from appearing. We won’t be removing them from the temp sort file, although we could, it’s just an extra step and the RC footnote eliminates them from concern. (Although this is probably why the blank page if a Page header is on the first sort key...but it’s good to know these things.)

Here’s the ‘file.temp’ macro:
[image:]
(Highlighted code needs to be joined into one line, separated here for display purposes only.)
The code moving urn|0^urn is from the ECB/ECE loop on the Detail line of the standard report. Doing it here so we can insert the value for urn into the temp sort.
This is a “reverse” DO loop. It’s not essential that the standard field names be used, it just makes it clearer what’s being done. But this would work as well (you can’t use the standard ‘urn’ then either):
“temp”^TEMP.PTR,
“”^SUB1^SUB2^SUB3^SUB4,
DO{+(/TREX[SUB1,SUB2,SUB3,”R”,SUB4],URN)^SUB4 URN|0^URN,
1^@TEMP.FILE;
+/TREX[SUB1,SUB2,SUB3]^SUB3;
+/TREX[SUB1,SUB2]^SUB2;
+/TREX[SUB1]^SUB1},
END;

TEMP.FILE
/[TEMP.PTR,SUB1,SUB2,SUB3,SUB4,URN]

Then the rest is just placing fields on the report.

b.date,b.time,e.date,e.time will have to go in computed fields, they can’t be placed directly on the report.

temp.extemp.name will become xx.extemp.name with the same attributes.

Extemp.med.name and extemp.dose.sig are in the temp sort, so they can be computed fields with VAL=PHA.RX.xx.extemp.med.name and VAL=PHA.RX.xx.extemp.dose.sig.

extemp.count needs to be subscripted with our temp sort index values, so @extemp.count[PHA.RX.xx.extemp.extemp,PHA.RX.xx.extemp.med.name,PHA.RX.xx.extemp.dose.sig]

Can’t initialize...
[image:]
In this case, it’s because the menu logic for the report is not one of the standard @Report or @Inquiry (that is, the screen itself calls the report’s object code.) This particular report’s screen has logic to determine which ADM.PAT.print report routine to use (there are recurring, referred, standard, and Canadian versions of those three. ADM.PAT.print proper is the standard.) Calling the standard screen won’t work, then, but the rest of the report is fairly straightforward, if lengthy. Other “can’t initialize” reports will need to be printed and examined as to their complexity.
image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image1.png

image2.png

image3.png

image42.gif

